Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantifying the hidden costs of imperfect detection for early detection surveillance.

Identifieur interne : 000405 ( Main/Exploration ); précédent : 000404; suivant : 000406

Quantifying the hidden costs of imperfect detection for early detection surveillance.

Auteurs : Alexander J. Mastin [Royaume-Uni] ; Frank Van Den Bosch [Royaume-Uni] ; Femke Van Den Berg [Royaume-Uni] ; Stephen R. Parnell [Royaume-Uni]

Source :

RBID : pubmed:31104597

Descripteurs français

English descriptors

Abstract

The global spread of pathogens poses an increasing threat to health, ecosystems and agriculture worldwide. As early detection of new incursions is key to effective control, new diagnostic tests that can detect pathogen presence shortly after initial infection hold great potential for detection of infection in individual hosts. However, these tests may be too expensive to be implemented at the sampling intensities required for early detection of a new epidemic at the population level. To evaluate the trade-off between earlier and/or more reliable detection and higher deployment costs, we need to consider the impacts of test performance, test cost and pathogen epidemiology. Regarding test performance, the period before new infections can be first detected and the probability of detecting them are of particular importance. We propose a generic framework that can be easily used to evaluate a variety of different detection methods and identify important characteristics of the pathogen and the detection method to consider when planning early detection surveillance. We demonstrate the application of our method using the plant pathogen Phytophthora ramorum in the UK, and find that visual inspec-tion for this pathogen is a more cost-effective strategy for early detection surveillance than an early detection diagnostic test. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.

DOI: 10.1098/rstb.2018.0261
PubMed: 31104597
PubMed Central: PMC6558562


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantifying the hidden costs of imperfect detection for early detection surveillance.</title>
<author>
<name sortKey="Mastin, Alexander J" sort="Mastin, Alexander J" uniqKey="Mastin A" first="Alexander J" last="Mastin">Alexander J. Mastin</name>
<affiliation wicri:level="1">
<nlm:affiliation>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT , UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT </wicri:regionArea>
<wicri:noRegion>Greater Manchester M5 4WT </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Den Bosch, Frank" sort="Van Den Bosch, Frank" uniqKey="Van Den Bosch F" first="Frank" last="Van Den Bosch">Frank Van Den Bosch</name>
<affiliation wicri:level="1">
<nlm:affiliation>2 Computational and Systems Biology, Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ , UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>2 Computational and Systems Biology, Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ </wicri:regionArea>
<wicri:noRegion>Hertfordshire AL5 2JQ </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Den Berg, Femke" sort="Van Den Berg, Femke" uniqKey="Van Den Berg F" first="Femke" last="Van Den Berg">Femke Van Den Berg</name>
<affiliation wicri:level="1">
<nlm:affiliation>3 Fera, National Agri-Food Innovation Campus , Sand Hutton, York YO41 1LZ , UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>3 Fera, National Agri-Food Innovation Campus , Sand Hutton, York YO41 1LZ </wicri:regionArea>
<wicri:noRegion>York YO41 1LZ </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parnell, Stephen R" sort="Parnell, Stephen R" uniqKey="Parnell S" first="Stephen R" last="Parnell">Stephen R. Parnell</name>
<affiliation wicri:level="1">
<nlm:affiliation>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT , UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT </wicri:regionArea>
<wicri:noRegion>Greater Manchester M5 4WT </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31104597</idno>
<idno type="pmid">31104597</idno>
<idno type="doi">10.1098/rstb.2018.0261</idno>
<idno type="pmc">PMC6558562</idno>
<idno type="wicri:Area/Main/Corpus">000475</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000475</idno>
<idno type="wicri:Area/Main/Curation">000475</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000475</idno>
<idno type="wicri:Area/Main/Exploration">000475</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantifying the hidden costs of imperfect detection for early detection surveillance.</title>
<author>
<name sortKey="Mastin, Alexander J" sort="Mastin, Alexander J" uniqKey="Mastin A" first="Alexander J" last="Mastin">Alexander J. Mastin</name>
<affiliation wicri:level="1">
<nlm:affiliation>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT , UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT </wicri:regionArea>
<wicri:noRegion>Greater Manchester M5 4WT </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Den Bosch, Frank" sort="Van Den Bosch, Frank" uniqKey="Van Den Bosch F" first="Frank" last="Van Den Bosch">Frank Van Den Bosch</name>
<affiliation wicri:level="1">
<nlm:affiliation>2 Computational and Systems Biology, Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ , UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>2 Computational and Systems Biology, Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ </wicri:regionArea>
<wicri:noRegion>Hertfordshire AL5 2JQ </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Den Berg, Femke" sort="Van Den Berg, Femke" uniqKey="Van Den Berg F" first="Femke" last="Van Den Berg">Femke Van Den Berg</name>
<affiliation wicri:level="1">
<nlm:affiliation>3 Fera, National Agri-Food Innovation Campus , Sand Hutton, York YO41 1LZ , UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>3 Fera, National Agri-Food Innovation Campus , Sand Hutton, York YO41 1LZ </wicri:regionArea>
<wicri:noRegion>York YO41 1LZ </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parnell, Stephen R" sort="Parnell, Stephen R" uniqKey="Parnell S" first="Stephen R" last="Parnell">Stephen R. Parnell</name>
<affiliation wicri:level="1">
<nlm:affiliation>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT , UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT </wicri:regionArea>
<wicri:noRegion>Greater Manchester M5 4WT </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Communicable Diseases (epidemiology)</term>
<term>Humans (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Phytophthora (physiology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Population Surveillance (methods)</term>
<term>Rhododendron (microbiology)</term>
<term>United Kingdom (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Humains (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Maladies transmissibles (épidémiologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Phytophthora (physiologie)</term>
<term>Rhododendron (microbiologie)</term>
<term>Royaume-Uni (MeSH)</term>
<term>Surveillance de la population (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>United Kingdom</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Communicable Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Population Surveillance</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Surveillance de la population</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Maladies transmissibles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Royaume-Uni</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Royaume-Uni</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The global spread of pathogens poses an increasing threat to health, ecosystems and agriculture worldwide. As early detection of new incursions is key to effective control, new diagnostic tests that can detect pathogen presence shortly after initial infection hold great potential for detection of infection in individual hosts. However, these tests may be too expensive to be implemented at the sampling intensities required for early detection of a new epidemic at the population level. To evaluate the trade-off between earlier and/or more reliable detection and higher deployment costs, we need to consider the impacts of test performance, test cost and pathogen epidemiology. Regarding test performance, the period before new infections can be first detected and the probability of detecting them are of particular importance. We propose a generic framework that can be easily used to evaluate a variety of different detection methods and identify important characteristics of the pathogen and the detection method to consider when planning early detection surveillance. We demonstrate the application of our method using the plant pathogen Phytophthora ramorum in the UK, and find that visual inspec-tion for this pathogen is a more cost-effective strategy for early detection surveillance than an early detection diagnostic test. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31104597</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>374</Volume>
<Issue>1776</Issue>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos Trans R Soc Lond B Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantifying the hidden costs of imperfect detection for early detection surveillance.</ArticleTitle>
<Pagination>
<MedlinePgn>20180261</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2018.0261</ELocationID>
<Abstract>
<AbstractText>The global spread of pathogens poses an increasing threat to health, ecosystems and agriculture worldwide. As early detection of new incursions is key to effective control, new diagnostic tests that can detect pathogen presence shortly after initial infection hold great potential for detection of infection in individual hosts. However, these tests may be too expensive to be implemented at the sampling intensities required for early detection of a new epidemic at the population level. To evaluate the trade-off between earlier and/or more reliable detection and higher deployment costs, we need to consider the impacts of test performance, test cost and pathogen epidemiology. Regarding test performance, the period before new infections can be first detected and the probability of detecting them are of particular importance. We propose a generic framework that can be easily used to evaluate a variety of different detection methods and identify important characteristics of the pathogen and the detection method to consider when planning early detection surveillance. We demonstrate the application of our method using the plant pathogen Phytophthora ramorum in the UK, and find that visual inspec-tion for this pathogen is a more cost-effective strategy for early detection surveillance than an early detection diagnostic test. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mastin</LastName>
<ForeName>Alexander J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT , UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van den Bosch</LastName>
<ForeName>Frank</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>2 Computational and Systems Biology, Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ , UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van den Berg</LastName>
<ForeName>Femke</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>3 Fera, National Agri-Food Innovation Campus , Sand Hutton, York YO41 1LZ , UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parnell</LastName>
<ForeName>Stephen R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>1 Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford , Greater Manchester M5 4WT , UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.6084/m9.figshare.c.4457798</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003141" MajorTopicYN="N">Communicable Diseases</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011159" MajorTopicYN="N">Population Surveillance</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029793" MajorTopicYN="N">Rhododendron</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006113" MajorTopicYN="N" Type="Geographic">United Kingdom</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">detection</Keyword>
<Keyword MajorTopicYN="Y">diagnosis</Keyword>
<Keyword MajorTopicYN="Y">early detection</Keyword>
<Keyword MajorTopicYN="Y">epidemic model</Keyword>
<Keyword MajorTopicYN="Y">invasive species</Keyword>
<Keyword MajorTopicYN="Y">surveillance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31104597</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2018.0261</ArticleId>
<ArticleId IdType="pmc">PMC6558562</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Jan 22;9(1):e86568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24466153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prev Vet Med. 2015 Jun 1;120(1):70-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25623970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 May 17;113(20):5640-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27140631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2016 Oct 21;407:290-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27477202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2012 Jul 21;305:30-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22480434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2013 Dec;14(9):856-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24102698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lett Appl Microbiol. 2010 Dec;51(6):650-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2017 Aug 28;13(8):e1005712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28846676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Health Serv Res. 2011 Sep 19;11:225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21929812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2016 Apr 05;12(4):e1004836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27046030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Rec. 2007 Oct 13;161(15):534-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2015 Sep 7;282(1814):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26336177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):863-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2017 Aug 4;55:591-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28637378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2004 Oct;19(10):535-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701319</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Mastin, Alexander J" sort="Mastin, Alexander J" uniqKey="Mastin A" first="Alexander J" last="Mastin">Alexander J. Mastin</name>
</noRegion>
<name sortKey="Parnell, Stephen R" sort="Parnell, Stephen R" uniqKey="Parnell S" first="Stephen R" last="Parnell">Stephen R. Parnell</name>
<name sortKey="Van Den Berg, Femke" sort="Van Den Berg, Femke" uniqKey="Van Den Berg F" first="Femke" last="Van Den Berg">Femke Van Den Berg</name>
<name sortKey="Van Den Bosch, Frank" sort="Van Den Bosch, Frank" uniqKey="Van Den Bosch F" first="Frank" last="Van Den Bosch">Frank Van Den Bosch</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000405 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000405 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31104597
   |texte=   Quantifying the hidden costs of imperfect detection for early detection surveillance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31104597" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024